3.68 \(\int \frac{(a+b x^2)^{5/2}}{(c+d x^2)^3} \, dx\)

Optimal. Leaf size=194 \[ -\frac{\sqrt{b c-a d} \left (3 a^2 d^2+4 a b c d+8 b^2 c^2\right ) \tanh ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{c} \sqrt{a+b x^2}}\right )}{8 c^{5/2} d^3}+\frac{b^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{d^3}-\frac{x \sqrt{a+b x^2} (b c-a d) (3 a d+4 b c)}{8 c^2 d^2 \left (c+d x^2\right )}-\frac{x \left (a+b x^2\right )^{3/2} (b c-a d)}{4 c d \left (c+d x^2\right )^2} \]

[Out]

-((b*c - a*d)*x*(a + b*x^2)^(3/2))/(4*c*d*(c + d*x^2)^2) - ((b*c - a*d)*(4*b*c + 3*a*d)*x*Sqrt[a + b*x^2])/(8*
c^2*d^2*(c + d*x^2)) + (b^(5/2)*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/d^3 - (Sqrt[b*c - a*d]*(8*b^2*c^2 + 4*a*
b*c*d + 3*a^2*d^2)*ArcTanh[(Sqrt[b*c - a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^2])])/(8*c^(5/2)*d^3)

________________________________________________________________________________________

Rubi [A]  time = 0.194419, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {413, 526, 523, 217, 206, 377, 208} \[ -\frac{\sqrt{b c-a d} \left (3 a^2 d^2+4 a b c d+8 b^2 c^2\right ) \tanh ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{c} \sqrt{a+b x^2}}\right )}{8 c^{5/2} d^3}+\frac{b^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{d^3}-\frac{x \sqrt{a+b x^2} (b c-a d) (3 a d+4 b c)}{8 c^2 d^2 \left (c+d x^2\right )}-\frac{x \left (a+b x^2\right )^{3/2} (b c-a d)}{4 c d \left (c+d x^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(5/2)/(c + d*x^2)^3,x]

[Out]

-((b*c - a*d)*x*(a + b*x^2)^(3/2))/(4*c*d*(c + d*x^2)^2) - ((b*c - a*d)*(4*b*c + 3*a*d)*x*Sqrt[a + b*x^2])/(8*
c^2*d^2*(c + d*x^2)) + (b^(5/2)*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/d^3 - (Sqrt[b*c - a*d]*(8*b^2*c^2 + 4*a*
b*c*d + 3*a^2*d^2)*ArcTanh[(Sqrt[b*c - a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^2])])/(8*c^(5/2)*d^3)

Rule 413

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((a*d - c*b)*x*(a + b*x^n)^
(p + 1)*(c + d*x^n)^(q - 1))/(a*b*n*(p + 1)), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 526

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*b*n*(p + 1)), x] + Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n
)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + b*e - a*f) + d*(b*e*n*(p + 1) + (b*e - a*f)*(n*q + 1))*x
^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && GtQ[q, 0]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^{5/2}}{\left (c+d x^2\right )^3} \, dx &=-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{4 c d \left (c+d x^2\right )^2}+\frac{\int \frac{\sqrt{a+b x^2} \left (a (b c+3 a d)+4 b^2 c x^2\right )}{\left (c+d x^2\right )^2} \, dx}{4 c d}\\ &=-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{4 c d \left (c+d x^2\right )^2}-\frac{(b c-a d) (4 b c+3 a d) x \sqrt{a+b x^2}}{8 c^2 d^2 \left (c+d x^2\right )}-\frac{\int \frac{-a \left (4 b^2 c^2+a d (b c+3 a d)\right )-8 b^3 c^2 x^2}{\sqrt{a+b x^2} \left (c+d x^2\right )} \, dx}{8 c^2 d^2}\\ &=-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{4 c d \left (c+d x^2\right )^2}-\frac{(b c-a d) (4 b c+3 a d) x \sqrt{a+b x^2}}{8 c^2 d^2 \left (c+d x^2\right )}+\frac{b^3 \int \frac{1}{\sqrt{a+b x^2}} \, dx}{d^3}-\frac{\left ((b c-a d) \left (8 b^2 c^2+4 a b c d+3 a^2 d^2\right )\right ) \int \frac{1}{\sqrt{a+b x^2} \left (c+d x^2\right )} \, dx}{8 c^2 d^3}\\ &=-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{4 c d \left (c+d x^2\right )^2}-\frac{(b c-a d) (4 b c+3 a d) x \sqrt{a+b x^2}}{8 c^2 d^2 \left (c+d x^2\right )}+\frac{b^3 \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )}{d^3}-\frac{\left ((b c-a d) \left (8 b^2 c^2+4 a b c d+3 a^2 d^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{c-(b c-a d) x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )}{8 c^2 d^3}\\ &=-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{4 c d \left (c+d x^2\right )^2}-\frac{(b c-a d) (4 b c+3 a d) x \sqrt{a+b x^2}}{8 c^2 d^2 \left (c+d x^2\right )}+\frac{b^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{d^3}-\frac{\sqrt{b c-a d} \left (8 b^2 c^2+4 a b c d+3 a^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{c} \sqrt{a+b x^2}}\right )}{8 c^{5/2} d^3}\\ \end{align*}

Mathematica [A]  time = 0.193342, size = 184, normalized size = 0.95 \[ \frac{\frac{\left (a^2 b c d^2+3 a^3 d^3+4 a b^2 c^2 d-8 b^3 c^3\right ) \tan ^{-1}\left (\frac{x \sqrt{a d-b c}}{\sqrt{c} \sqrt{a+b x^2}}\right )}{c^{5/2} \sqrt{a d-b c}}+8 b^{5/2} \log \left (\sqrt{b} \sqrt{a+b x^2}+b x\right )+\frac{d x \sqrt{a+b x^2} (a d-b c) \left (a d \left (5 c+3 d x^2\right )+2 b c \left (2 c+3 d x^2\right )\right )}{c^2 \left (c+d x^2\right )^2}}{8 d^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(5/2)/(c + d*x^2)^3,x]

[Out]

((d*(-(b*c) + a*d)*x*Sqrt[a + b*x^2]*(2*b*c*(2*c + 3*d*x^2) + a*d*(5*c + 3*d*x^2)))/(c^2*(c + d*x^2)^2) + ((-8
*b^3*c^3 + 4*a*b^2*c^2*d + a^2*b*c*d^2 + 3*a^3*d^3)*ArcTan[(Sqrt[-(b*c) + a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^2])])/
(c^(5/2)*Sqrt[-(b*c) + a*d]) + 8*b^(5/2)*Log[b*x + Sqrt[b]*Sqrt[a + b*x^2]])/(8*d^3)

________________________________________________________________________________________

Maple [B]  time = 0.026, size = 14133, normalized size = 72.9 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(5/2)/(d*x^2+c)^3,x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{\frac{5}{2}}}{{\left (d x^{2} + c\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/(d*x^2+c)^3,x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(5/2)/(d*x^2 + c)^3, x)

________________________________________________________________________________________

Fricas [B]  time = 4.26576, size = 3125, normalized size = 16.11 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/(d*x^2+c)^3,x, algorithm="fricas")

[Out]

[1/32*(16*(b^2*c^2*d^2*x^4 + 2*b^2*c^3*d*x^2 + b^2*c^4)*sqrt(b)*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a
) + (8*b^2*c^4 + 4*a*b*c^3*d + 3*a^2*c^2*d^2 + (8*b^2*c^2*d^2 + 4*a*b*c*d^3 + 3*a^2*d^4)*x^4 + 2*(8*b^2*c^3*d
+ 4*a*b*c^2*d^2 + 3*a^2*c*d^3)*x^2)*sqrt((b*c - a*d)/c)*log(((8*b^2*c^2 - 8*a*b*c*d + a^2*d^2)*x^4 + a^2*c^2 +
 2*(4*a*b*c^2 - 3*a^2*c*d)*x^2 - 4*(a*c^2*x + (2*b*c^2 - a*c*d)*x^3)*sqrt(b*x^2 + a)*sqrt((b*c - a*d)/c))/(d^2
*x^4 + 2*c*d*x^2 + c^2)) - 4*(3*(2*b^2*c^2*d^2 - a*b*c*d^3 - a^2*d^4)*x^3 + (4*b^2*c^3*d + a*b*c^2*d^2 - 5*a^2
*c*d^3)*x)*sqrt(b*x^2 + a))/(c^2*d^5*x^4 + 2*c^3*d^4*x^2 + c^4*d^3), -1/32*(32*(b^2*c^2*d^2*x^4 + 2*b^2*c^3*d*
x^2 + b^2*c^4)*sqrt(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) - (8*b^2*c^4 + 4*a*b*c^3*d + 3*a^2*c^2*d^2 + (8*b^2
*c^2*d^2 + 4*a*b*c*d^3 + 3*a^2*d^4)*x^4 + 2*(8*b^2*c^3*d + 4*a*b*c^2*d^2 + 3*a^2*c*d^3)*x^2)*sqrt((b*c - a*d)/
c)*log(((8*b^2*c^2 - 8*a*b*c*d + a^2*d^2)*x^4 + a^2*c^2 + 2*(4*a*b*c^2 - 3*a^2*c*d)*x^2 - 4*(a*c^2*x + (2*b*c^
2 - a*c*d)*x^3)*sqrt(b*x^2 + a)*sqrt((b*c - a*d)/c))/(d^2*x^4 + 2*c*d*x^2 + c^2)) + 4*(3*(2*b^2*c^2*d^2 - a*b*
c*d^3 - a^2*d^4)*x^3 + (4*b^2*c^3*d + a*b*c^2*d^2 - 5*a^2*c*d^3)*x)*sqrt(b*x^2 + a))/(c^2*d^5*x^4 + 2*c^3*d^4*
x^2 + c^4*d^3), 1/16*((8*b^2*c^4 + 4*a*b*c^3*d + 3*a^2*c^2*d^2 + (8*b^2*c^2*d^2 + 4*a*b*c*d^3 + 3*a^2*d^4)*x^4
 + 2*(8*b^2*c^3*d + 4*a*b*c^2*d^2 + 3*a^2*c*d^3)*x^2)*sqrt(-(b*c - a*d)/c)*arctan(1/2*((2*b*c - a*d)*x^2 + a*c
)*sqrt(b*x^2 + a)*sqrt(-(b*c - a*d)/c)/((b^2*c - a*b*d)*x^3 + (a*b*c - a^2*d)*x)) + 8*(b^2*c^2*d^2*x^4 + 2*b^2
*c^3*d*x^2 + b^2*c^4)*sqrt(b)*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) - 2*(3*(2*b^2*c^2*d^2 - a*b*c*d^
3 - a^2*d^4)*x^3 + (4*b^2*c^3*d + a*b*c^2*d^2 - 5*a^2*c*d^3)*x)*sqrt(b*x^2 + a))/(c^2*d^5*x^4 + 2*c^3*d^4*x^2
+ c^4*d^3), -1/16*(16*(b^2*c^2*d^2*x^4 + 2*b^2*c^3*d*x^2 + b^2*c^4)*sqrt(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)
) - (8*b^2*c^4 + 4*a*b*c^3*d + 3*a^2*c^2*d^2 + (8*b^2*c^2*d^2 + 4*a*b*c*d^3 + 3*a^2*d^4)*x^4 + 2*(8*b^2*c^3*d
+ 4*a*b*c^2*d^2 + 3*a^2*c*d^3)*x^2)*sqrt(-(b*c - a*d)/c)*arctan(1/2*((2*b*c - a*d)*x^2 + a*c)*sqrt(b*x^2 + a)*
sqrt(-(b*c - a*d)/c)/((b^2*c - a*b*d)*x^3 + (a*b*c - a^2*d)*x)) + 2*(3*(2*b^2*c^2*d^2 - a*b*c*d^3 - a^2*d^4)*x
^3 + (4*b^2*c^3*d + a*b*c^2*d^2 - 5*a^2*c*d^3)*x)*sqrt(b*x^2 + a))/(c^2*d^5*x^4 + 2*c^3*d^4*x^2 + c^4*d^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{2}\right )^{\frac{5}{2}}}{\left (c + d x^{2}\right )^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(5/2)/(d*x**2+c)**3,x)

[Out]

Integral((a + b*x**2)**(5/2)/(c + d*x**2)**3, x)

________________________________________________________________________________________

Giac [B]  time = 1.23433, size = 890, normalized size = 4.59 \begin{align*} -\frac{b^{\frac{5}{2}} \log \left ({\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2}\right )}{2 \, d^{3}} + \frac{{\left (8 \, b^{\frac{7}{2}} c^{3} - 4 \, a b^{\frac{5}{2}} c^{2} d - a^{2} b^{\frac{3}{2}} c d^{2} - 3 \, a^{3} \sqrt{b} d^{3}\right )} \arctan \left (\frac{{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} d + 2 \, b c - a d}{2 \, \sqrt{-b^{2} c^{2} + a b c d}}\right )}{8 \, \sqrt{-b^{2} c^{2} + a b c d} c^{2} d^{3}} - \frac{16 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{6} b^{\frac{7}{2}} c^{3} d - 20 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{6} a b^{\frac{5}{2}} c^{2} d^{2} +{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{6} a^{2} b^{\frac{3}{2}} c d^{3} + 3 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{6} a^{3} \sqrt{b} d^{4} + 48 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{4} b^{\frac{9}{2}} c^{4} - 72 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{4} a b^{\frac{7}{2}} c^{3} d + 18 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{4} a^{2} b^{\frac{5}{2}} c^{2} d^{2} + 15 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{4} a^{3} b^{\frac{3}{2}} c d^{3} - 9 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{4} a^{4} \sqrt{b} d^{4} + 32 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} a^{2} b^{\frac{7}{2}} c^{3} d - 28 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} a^{3} b^{\frac{5}{2}} c^{2} d^{2} - 13 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} a^{4} b^{\frac{3}{2}} c d^{3} + 9 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} a^{5} \sqrt{b} d^{4} + 6 \, a^{4} b^{\frac{5}{2}} c^{2} d^{2} - 3 \, a^{5} b^{\frac{3}{2}} c d^{3} - 3 \, a^{6} \sqrt{b} d^{4}}{4 \,{\left ({\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{4} d + 4 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} b c - 2 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} a d + a^{2} d\right )}^{2} c^{2} d^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/(d*x^2+c)^3,x, algorithm="giac")

[Out]

-1/2*b^(5/2)*log((sqrt(b)*x - sqrt(b*x^2 + a))^2)/d^3 + 1/8*(8*b^(7/2)*c^3 - 4*a*b^(5/2)*c^2*d - a^2*b^(3/2)*c
*d^2 - 3*a^3*sqrt(b)*d^3)*arctan(1/2*((sqrt(b)*x - sqrt(b*x^2 + a))^2*d + 2*b*c - a*d)/sqrt(-b^2*c^2 + a*b*c*d
))/(sqrt(-b^2*c^2 + a*b*c*d)*c^2*d^3) - 1/4*(16*(sqrt(b)*x - sqrt(b*x^2 + a))^6*b^(7/2)*c^3*d - 20*(sqrt(b)*x
- sqrt(b*x^2 + a))^6*a*b^(5/2)*c^2*d^2 + (sqrt(b)*x - sqrt(b*x^2 + a))^6*a^2*b^(3/2)*c*d^3 + 3*(sqrt(b)*x - sq
rt(b*x^2 + a))^6*a^3*sqrt(b)*d^4 + 48*(sqrt(b)*x - sqrt(b*x^2 + a))^4*b^(9/2)*c^4 - 72*(sqrt(b)*x - sqrt(b*x^2
 + a))^4*a*b^(7/2)*c^3*d + 18*(sqrt(b)*x - sqrt(b*x^2 + a))^4*a^2*b^(5/2)*c^2*d^2 + 15*(sqrt(b)*x - sqrt(b*x^2
 + a))^4*a^3*b^(3/2)*c*d^3 - 9*(sqrt(b)*x - sqrt(b*x^2 + a))^4*a^4*sqrt(b)*d^4 + 32*(sqrt(b)*x - sqrt(b*x^2 +
a))^2*a^2*b^(7/2)*c^3*d - 28*(sqrt(b)*x - sqrt(b*x^2 + a))^2*a^3*b^(5/2)*c^2*d^2 - 13*(sqrt(b)*x - sqrt(b*x^2
+ a))^2*a^4*b^(3/2)*c*d^3 + 9*(sqrt(b)*x - sqrt(b*x^2 + a))^2*a^5*sqrt(b)*d^4 + 6*a^4*b^(5/2)*c^2*d^2 - 3*a^5*
b^(3/2)*c*d^3 - 3*a^6*sqrt(b)*d^4)/(((sqrt(b)*x - sqrt(b*x^2 + a))^4*d + 4*(sqrt(b)*x - sqrt(b*x^2 + a))^2*b*c
 - 2*(sqrt(b)*x - sqrt(b*x^2 + a))^2*a*d + a^2*d)^2*c^2*d^3)